skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilkinson, Michael K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a novel method for extracting a fragmentation model directly from experimental data without requiring an explicit parametric form, called Histories and Observables for Monte-Carlo Event Reweighting (HOMER), consisting of three steps: the training of a classifier between simulation and data, the inference of single fragmentation weights, and the calculation of the weight for the full hadronization chain. We illustrate the use of HOMER on a simplified hadronization problem, aq\bar{q} q q string fragmenting into pions, and extract a modified Lund string fragmentation functionf(z) f ( z ) . We then demonstrate the use of HOMER on three types of experimental data: (i) binned distributions of high-level observables, (ii) unbinned event-by-event distributions of these observables, and (iii) full particle cloud information. After demonstrating thatf(z) f ( z ) can be extracted from data (the inverse of hadronization), we also show that, at least in this limited setup, the fidelity of the extractedf(z) f ( z ) suffers only limited loss when moving from (i) to (ii) to (iii). Public code is available at https://gitlab.com/uchep/mlhad. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  2. We introduce a model of hadronization based on invertible neural networks that faithfully reproduces a simplified version of the Lund string model for meson hadronization. Additionally, we introduce a new training method for normalizing flows, termed MAGIC, that improves the agreement between simulated and experimental distributions of high-level (macroscopic) observables by adjusting single-emission (microscopic) dynamics. Our results constitute an important step toward realizing a machine-learning based model of hadronization that utilizes experimental data during training. Finally, we demonstrate how a Bayesian extension to this normalizing-flow architecture can be used to provide analysis of statistical and modeling uncertainties on the generated observable distributions. 
    more » « less
  3. This work reports on a method for uncertainty estimation in simulated collider-event predictions. The method is based on a Monte Carlo-veto algorithm, and extends previous work on uncertainty estimates in parton showers by including uncertainty estimates for the Lund string-fragmentation model. This method is advantageous from the perspective of simulation costs: a single ensemble of generated events can be reinterpreted as though it was obtained using a different set of input parameters, where each event now is accompanied with a corresponding weight. This allows for a robust exploration of the uncertainties arising from the choice of input model parameters, without the need to rerun full simulation pipelines for each input parameter choice. Such explorations are important when determining the sensitivities of precision physics measurements. Accompanying code is available at https://gitlab.com/uchep/mlhad-weights-validation. 
    more » « less
  4. Abstract The CODEX-βapparatus is a demonstrator for the proposed future CODEX-b experiment, a long-lived-particle detector foreseen for operation at IP8 during HL-LHC data-taking. The demonstrator project, intended to collect data in 2025, is described, with a particular focus on the design, construction, and installation of the new apparatus. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  5. Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- J / ψ μ + μ and\psi(2S)\to\mu^+\mu^- ψ ( 2 S ) μ + μ processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} s = 13 T e V with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 2 < η μ ± < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 σ J / ψ μ + μ ( 2.0 < y J / ψ < 4.5 , 2.0 < η μ ± < 4.5 ) = 400 ± 2 ± 5 ± 12 p b , σ ψ ( 2 S ) μ + μ ( 2.0 < y ψ ( 2 S ) < 4.5 , 2.0 < η μ ± < 4.5 ) = 9.40 ± 0.15 ± 0.13 ± 0.27 p b , where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) ψ ( 2 S ) andJ/\psi J / ψ cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} 1 T e V , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ J / ψ and\psi(2S) ψ ( 2 S ) cross-sections on the total transverse momentum transfer is determined inpp p p collisions and is found consistent with the behaviour observed in electron-proton collisions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026